STAR Plan for Run 11

Stephen Trentalange for the STAR Collaboration

STAR Physics Goals for Run 11

- Spin Physics (p+p @ 500 GeV 10 Weeks)
 - Longitudinal ($L = 80 \text{ pb}^{-1} \text{ P}^2\text{L} = 20 \text{ pb}^{-1}$)
 - W A_L at mid-rapidity
 - Δg from Jets/Di-Jets
 - DPE and Hadronic Spin-Flip Amplitude
 - Transverse ($P^2L = 4 \text{ pb}^{-1}$)
 - π , η , Jet A_N vs x_F and p_T
- Heavy Ion Physics (Au+Au, U+U)

Detector Configuration for Run 11

Some extras: Muon Telescope, Test of GEM Prototype, W-powder SPACAL prototype...

New ZDC SMD polarimetry

Purpose:

- Improve relative luminosity for jet A_{II}.
- Study large A_N at forward angles

Setup:

- 6 modules from Brahms and 2 existing STAR modules

Status:

- Cosmic test performed
- Installed
- Rest of system unchanged

STAR Run Plan: 1-7-2 or 4-6?

Transverse Spin: L*p2=4 pb-1 FMS, π⁰ and jets First 4 weeks

Criteria

Long. Spin: $L^*p^2 = 20 \text{ pb}^{-1}$ W±, jets at midrapidity last 6 weeks

 \Rightarrow L*p⁴=4 pb⁻¹

FMS Jet Patch/Cluster Trigger

- Four fixed jet patches (JP), each covering $\sim 90^{\circ}$ in azimuth
 - Maximize the efficiency for the rare, highest energy events
- Board sum (BSum) triggers
 - Approximate capabilities of the current cluster trigger
 - Provide efficiency for "inclusive ... meson" measurements at lower energies where the JP trigger rates would be too high
- High tower triggers
 - For calibration and diagnostics
- Possible di-jet and J/ψ trigger (two non-adjacent JP0 patches)

FMS Run 11 Projections: 20 pb⁻¹

Projected η SSA Errors for 20 pb⁻¹ Asymmetry vs Feynman X_F (Projections for 6 Gev/c < p_T < 9 GeV/c)

Dijet Correlation Measurements

- Reconstructing multiple physics objects (di-jets, photon-jet) provides information about initial parton kinematics
- STAR well-suited for correlation measurements due to large acceptance

$$x_{1} = \frac{1}{\sqrt{s}} (p_{T3}e^{\eta_{3}} + p_{T4}e^{\eta_{4}})$$

$$x_{2} = \frac{1}{\sqrt{s}} (p_{T3}e^{-\eta_{3}} + p_{T4}e^{-\eta_{4}})$$

$$M = \sqrt{x_{1}x_{2}s}$$

$$\eta_{3} + \eta_{4} = \ln \frac{x_{1}}{x_{2}}$$

Dijet Cross Section and Asymmetry

Di-Jet ALL Projections

Shown $LP^4 = 24/pb$ In Run 11 expected ~5/pb

STAR Spin Plan Run11 Jan Balewski, MIT 10

60 70

80

M [GeV/c²]

50 60 70

80

90 100 110

M [GeV/c²]

Single Spin Asymmetries for Ws

 $2009 (LP^2 = 1.8 pb^{-1})$

$$(LP^2 = 25 pb^{-1})$$

Summary: Plans Unchanged since Last Update

- STAR plans for 10 weeks of polarized pp
- Transverse/Longitudinal $\sim 4/6$ or 1/7/2
- Improved ZDC luminosity monitoring/polarimetry
- W Asymmetries for antiquark spin pdfs
- Jets/Dijets for gluon $\Delta G / \Delta g(x)$
- Forward Physics: Sivers/Collins Quark Orbital Angular Momentum